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Virtual mass terms as an interfacial force, taking account of relative acceleration of the
bubbles in the liquid phase, have been generally accepted in the two-phase #ow models since
they conditionally stabilize the numerical scheme. Despite the convincing physical reasoning
associated with the bubble #ow dynamics, it can be shown that the virtual mass terms
unfortunately cause non-physical dispersion in the sound wave propagation. By introducing
in the momentum equations new interfacial pressure jump terms based on the surface
tension and represented by a function of the #uid bulk moduli, the governing equation
system becomes strictly hyperbolic in the present paper with real eigenvalues, regardless of
inclusion of the virtual mass terms. It is remarkable that the eigenvalues give realistic speeds
of sound when the objective virtual mass terms are reduced more and more until they vanish.
On the occasion that the virtual mass terms have to be kept with the interfacial pressure
jump terms in the wave-dominant two-phase #ow problems, we recommend that the
non-physical wave dispersion due to the virtual mass terms should be appropriately
controlled.

( 2001 Academic Press
1. INTRODUCTION

In this paper, we will analyze the e!ect of interfacial pressure jump terms employed
simultaneously with the virtual mass terms in the momentum equations of a two-#uid,
two-phase #ow. It is well known that the coe$cient matrices of the time and the spatial
derivative terms in the conservation equation system determine the system eigenvalues by
which the speeds of sound propagation are evaluated. We can show that each of the
interfacial pressure jump terms and the virtual mass terms retained in the momentum
equations help to improve the numerical stability of the initial value problems, extending
the parameter range in which the equation system yields real eigenvalues. It is also well
known that the system eigenvalues are in#uenced not only by the rate of change of the
conservation variables but also by the source terms if they are not of algebraic form like the
virtual mass terms.
0022-460X/01/290717#12 $35.00/0 ( 2001 Academic Press
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Most of the conventional two-#uid models claiming continuous pressure across the
phasic interface su!er from the numerical instability of the ill-posed initial value problem or
due to the complex eigenvalues as Lyczkowski [1], Ramsaw and Trapp [2], and Stewart [3]
have indicated. From the mechanical point of view, it seems more reasonable to assume that
the pressure non-equilibrium across the interface is due to the unequal #ow velocities
between the gas and the liquid phases. Therefore, the two-#uid model with the pressure
jump terms based on the unequal phase velocities should give more realistic results for the
two-phase #ow.

It is well known that wave speed of the small-amplitude, short-wavelength disturbances
are dictated by the real part of the eigenvalues, while the complex part does amplify the
wave amplitude with the consequence of short-wavelength numerical instability. If the
eigenvalues are all real and distinct, the initial value problem is well posed in the sense that
the system is stable against the small-amplitude, short-wavelength disturbances.

The virtual mass as a momentum source term plays some positive roles as has been
reported in the literature: see references [4, 5]. For example, the virtual mass terms are made
approximately proportional to the unsteady acceleration of the bubbles in the liquid
medium so that the conservation equations with these terms are capable of modelling
bubble dynamics of the two-phase #ow better than the one without this virtual mass force.
However, it is unfortunate that the proportionality factor or the so-called virtual mass
coe$cient has still to be determined empirically without any theoretical reasoning.

It is also true that the numerical computation shows more stability with the virtual mass
terms. However, it should be made clear that the virtual mass coe$cient has de"nitely an
admissible range of values for numerical stability: see reference [6]. Lahey et al. [4] reported
that inclusion of the virtual mass terms dramatically improved the computational e$ciency.
They indicated that for the #ow condition of high spatial acceleration such as a critical
two-phase #ow, the virtual mass was of prime importance and could not be neglected. Drew
and Lahey [7] have realized the principle of objectivity for the virtual mass terms by
calculating exactly the force imposed on a single sphere in an inviscid, incompressible #uid.
It has been argued that this e!ect is brought about by the system eigenvalues altered by the
virtual mass terms: see reference [8].

In this paper, we will show that the conventional two-phase, two-#uid model with the
objective form of virtual mass terms produces not only the complex eigenvalues but also
unrealistic wave dispersion. Derivation of a quantitative criterion in which the virtual mass
coe$cient gives reasonable speed of sound is unfortunately impossible because the system
of equations with the virtual mass terms only, not together with the interfacial pressure
jump terms, has complex eigenvalues.

Recently, a promising approach to improve mathematical property of the two-phase,
two-#uid equation system has been proposed by the present authors. New interfacial
pressure jump terms based on the surface tension were added to the two-#uid momentum
equations: see references [9}11]. It has been shown that the system of equations produces
real eigenvalues in all realistic ranges of the bubbly, slug, and annular #ows. Further, it is
noteworthy that the analytically obtained eigenvalues yield speeds of sound wave
propagating in the two-phase #ow well agreeing with the measured data, even with the
conventional virtual mass terms totally dropped from the momentum equations.

On the occasion when the virtual mass terms were included to investigate the unsteady
two-phase #ow, propagation of the small-amplitude disturbance was predicted slightly
better but only when the virtual mass coe$cient was taken small. We will show in this paper
how much the speed of sound is deviated from the measured data by inclusion of the virtual
mass terms, with the virtual mass coe$cient as a parameter, in the relatively low void
fraction range.
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2. GOVERNING EQUATIONS

The basic conservation laws for the area-averaged phasic variables are, for
one-dimensional unsteady two-phase #ows, as follows:
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Here, a
k
, o

k
, p

k
, and v

k
denote void fraction, density, pressure, and #ow velocity of phase

k respectively. We assign k"g for the gas and k"l for the liquid. The terms /
c,k

and
/
m,k

represent, respectively, the mass source and the momentum source terms including the
virtual mass. We set here the mass source neglected.

2.1. INTERFACIAL PRESSURE JUMP TERMS

Young and Laplace proposed the well-known surface tension equation, for a bubble of
radius R,
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. (3)

We assume an in"nitesimal surface thickness d between two radii Rg and R
l
as in Figure 1. It

may represent the hypothetical interfacial thickness introduced earlier in the statistical
mechanics: see references [12}14]. Brackbill et al. [15] have presented a numerical method,
by interpreting the surface tension as a continuous, three-dimensional e!ect across the
interface of "nite "lm thickness, that alleviates the interface topology constraints. It is called
the continuum surface force (CSF) model. In the limit that the width of transition in the
direction normal to the interface thickness goes to zero, the volume force becomes the
integral of surface tension multiplied by a delta function.

On an imaginary sphere inside the "lm at the average radius R
i
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i
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assume that equation (3) still holds true, namely,
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By a small radial increment, DR
i
, the surface area of the bubble is increased by the

amount DA
i
and the inner and the outer spherical volumes by D<g and D<

l
respectively. We

can readily show that these variables satisfy the following relations:
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Figure 1. Hypothetical midsphere at R
i
(the solid circle) in the "lm of thickness d.
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We can then rewrite equation (4) as
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In equation (7), the coe$cient 4p/d plays the role of Lagrangian multiplier introduced by
Aubin and Ekeland [16]; the quantity in parentheses may be recognized as a slack variable
used in the non-linear analysis, see reference [17]. We recall here the relation, ¸"cp/d,
used in physical chemistry and statistical mechanics, where ¸ is the bulk modulus and c is
a constant. Then we can assume that the ambiguous surface tension stress 4p/d can be given
in terms of the more de"nitive quantity, the bulk moduli of the two phases. That is
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Using the phasic speed of sound, c2
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, we get the bulk modulus ¸
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It is noteworthy that the surface thickness d in equation (8) complies with the relation,
l+ps/2c, which is derived by Van Stralen [18] from the Van der Waals and Cahn}Hilliard
equation, where l is the interfacial thickness, of order O(10~10 m) for liquids, s is isothermal
compressibility, and c is a constant.

Equations (7) and (8) lead to
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An identity,
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is used where p
i
is a hypothetical interfacial pressure represented on the sphere of radius R

i
.

By assuming that the phasic contributions are matching between the two equations (9) and (10),
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we take
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Multiplying the factor Lag/Lx with equation (11) and La
l
/Lx with equation (12), and taking

the limit DR
i
P0, we get

(pg!p
i
)
Lag

Lx
"¸g A

Lag

Lx
!

Rg

2

La
i

LxB , (13)

(p
i
!p

l
)
La

l
Lx

"!¸
l A

La
l

Lx
#

R
l

2

La
i

LxB , (14)

where a
i
is the interfacial area density. The interfacial pressure jump terms in equation (2),

the last term on the left-hand side, have been derived in the following form using the original
surface tension modelling, [9}11]:
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We use for the bubbly #ow the interfacial area density relation, a
i
"3)6ag/Dave

, which is
suggested by Ishii and Mishima [19]. The averaged bubble diameter D

ave
is generally

obtained by using the Weber number, We,2D
ave

o
l
(vg!v

l
)2/p. However, if we simply

assume that the two radii Rg and R
l
are equal to half of the averaged bubble diameter D

ave
,

then the coe$cient of interfacial pressure jump C
i

is a constant having an order of
magnitude O(10~1).

Since the interface of one phase #uid can be regarded as the elastic boundary of the other,
the sound speed of one phase #uid should show a dependency upon the bulk modulus of the
other #uid. Here, the speed of sound decreases with increasing elasticity of the surrounding
#uid. The interfacial pressure jump represented by the two #uid bulk moduli accordingly
gives appropriate in#uence to the wave propagation speed in the mixture. Further, because
the two-phase #uids have drastically di!erent bulk moduli, di!erent in the order of
magnitude, a slight increase in the void fraction of the mixture would result in a signi"cant
reduction of the speed of sound in the two-phase #ow. For this reason, the interfacial
pressure jump terms in equations (15) and (16) contribute physically to the realistic speed of
sound in the two-phase mixture and mathematically to the real eigenvalues of the equation
system.

2.2. VIRTUAL MASS TERMS

The virtual mass, also known as added mass or apparent mass, is associated with the
force required to accelerate the #uid surrounding a moving body of di!erent phase. It has
the e!ect of liquid retarding, interpreted as inertia force acting on the accelerating bubble.



722 M.-S. CHUNG E¹ A¸.
The most general objective form of the virtual mass is
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where (!) is for the gas and (#) is for the liquid, C is the coe$cient of virtual mass and e is
a function of void fraction. With e"2 for the low void fraction limit and C

v
,agol

C,
equation (17) becomes the objective formulation proposed by Drew and Lahey [7]:
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The coe$cient C can be taken as 0)5 for a spherical bubble.

2.3. MATRIX FORM OF THE GOVERNING EQUATIONS

Using the identity Lpg/Lx"Lp
l
/Lx obtained by di!erentiating the Young and Laplace

equation (3) and the speed of sound de"ned previously, we can explicitly write the
governing equations as follows.
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Momentum:
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For the bubbly #ow as a perfect mixture, the bulk modulus can be written as

¸
m
"!<

dp

d<
"!<

dp

d<g#d<
l

"<
dp

<g dp/¸g#<l
dp/¸

l

. (23)

Since the #uid bulk modulus is ¸
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and it holds that ¸g@¸
l
, equation (23) yields

C
i
¸
m
+C

i
¸g/ag , (24)

which holds true in the range ag*¸g/¸l
. We can assume here that the order of magnitude

of the mixture bulk modulus is almost equal to that of the gas by taking ag+O(10~1) for
the bubbly #ow, which gives the conclusion C

i
¸

m
"ogc2g .

As the bubble radius is reduced to zero in an extreme case or when there is no bubble, we
put zero on the void fraction. Then, the continuity (1) and the momentum equations (2) of
the gas phase disappear. Since the limiting condition of single-phase #ow also means that
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the gradient of void fraction is zero in the #ow "eld, i.e., La
k
/Lx"0, the fourth term of the

momentum equation (2) vanishes. The governing equations without the interfacial pressure
jump terms are then clearly reduced to those of the single-phase #ow.

Equations (19)}(22) are combined in a matrix form

A
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where A and B are the coe$cient matrices and ; is the state vector consisting of the
primitive variables, i.e., ;"(ag , og , vg , vl

)T.

3. CHARACTERISTIC ANALYSIS

The eigenvalues of the governing equation system represent propagation speed of the
small-amplitude short-wavelength perturbations according to Whitham [20]. For the
long-wavelength disturbances, the source terms play an important role whereas for
large-amplitude disturbances the non-linear wave interaction has a dominant e!ect: these
waves are, however, not considered in this paper. If the eigenvalues are all real and distinct,
the governing equations are hyperbolic and numerically stable in the initial value problem
against the short-wavelength disturbances. Characteristic analysis excludes the algebraic
source terms which do not a!ect the system eigenvalues.

3.1. SURFACE TENSION EFFECT

The eigenvalues of the Jacobian matrix G"A~1B, without the virtual mass terms in
equation (25), are all real as we will derive them analytically using the equation
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A fourth order polynomial characteristic equation is obtained,
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Two eigenvalues j
1

and j
3

represent the speed of sound in the gas and the liquid phases
respectively. The speed of sound in the mixture is expressed by void fraction weighting as
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The speed of sound in the two-phase mixture is shown in Figure 2 along with the
experimental data given by Henry et al. [21]. The present result agrees well with the
experimental data up to the void fraction 0)22. Afterwards, the deviation at ag"0)3, for



Figure 2. Speed of sound in the mixture with both the interfacial pressure jump and the virtual mass terms
included, for low-speed two-phase bubbly #ow (pg"283 kPa). **, Surface tension terms only; - - - - - , surface
tension#virtual mass with C"0)5; j, compression pulse by Henry et al.; d, rarefaction pulse by Henry et al.
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example, is probably caused by the e!ect of transition between two-phase #ow regimes. For
this particular computation, we assumed very low phasic velocities with an interfacial slip
ratio vg/vl

"0)03/0)01"3.
When there is no #ow, no virtual mass e!ect would be found. The eigenvalues (28) and

(29) now become the speeds of sound in the stagnant #uids with zero phasic velocities, i.e.,
vg"v

l
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Then, the speed of sound in the mixture becomes as follows:
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The speed of sound in the mixture is now reduced to that of the single-phase #uid in an
extreme case of ag P0 or a

l
P0. That is,
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Thus, the result is perfectly consistent with the single-phase #ow in the extreme.



SOUND WAVE PROPAGATION IN THE TWO-PHASE FLOW 725
3.2. VIRTUAL MASS EFFECT

We "rst include the virtual mass terms only, not the interfacial pressure jump terms. The
eigenvalues of equation (25) shall be obtained as the roots of the fourth order characteristic
polynomial equation in a very complicated form. The characteristic polynomial can be
reduced, however, to quadratic if we assume that the phasic #ow velocities are very low in
comparison with the phasic speeds of sound namely,
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The above eigenvalues have two imaginary values satisfying the condition
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with C
v
*0. Therefore, if there are no surface tension terms, the system of equations having

the objective virtual mass terms only always has complex eigenvalues.

3.3. THE COMBINED SURFACE TENSION AND VIRTUAL MASS EFFECT

Next, we investigate the e!ect of the interfacial pressure jump terms included in addition
to the virtual mass terms in the momentum equations. We can show that the system of
equations always yields real eigenvalues. Here we use again the previous low-speed #ow
assumption to obtain the characteristic equation of quadratic form: equation (36) with
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Figure 3. E!ect of the virtual mass coe$cient on the speed of sound in the mixture. **, Surface ten-
sion#Virtual mass with C"0)0; } } } } , surface tension#Virtual mass with C"0)1; - - - - - , surface ten-
sion#Virtual mass with C"0)5; } )} ) } ) }, surface tension#Virtual mass with C"1)0; j, compression pulse by
Henry et al.; d, rarefaction pulse by Henry et al.
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The roots are

j
1,2

"

C
v
(a2g v

l
#a2

l
vg#agal(vg#v

l
))#agal(agol

v
l
#a

l
ogvg)

C
v
#agal(agol

#a
l
og)

$

JMC
v
(a2g v

l
#a2

l
vg#agal (vg#v

l
))#agal (agol

v
l
#a

l
ogvg)N2

C
v
#agal

(agol
#a

l
og)

!

MC
v
#agal(agol

#a
l
og)NMC

v
(a2g v2

l
#a2

l
v2g#agal(v2g#v2

l
))

C
v
#agal (agol

#a
l
og)

#

(agol
v2
l
#a

l
ogv2g!ogc2g )agalN

C
v
#agal (agol

#a
l
og) .

(45)

The eigenvalues are real and distinct for the virtual mass coe$cient C*0 because we can
easily show that the arguments of square root in the above are all positive for the low-speed
#ow assumption in equation (35). The speed of sound in the mixture is plotted in Figure 2
for the virtual mass coe$cient taken as C"0)5. Figure 3 shows the speed of sound in the
mixture obtained numerically without any assumption of low-speed #ow by using several
di!erent values on the virtual mass coe$cient. The fourth order polynomial is numerically
solved to obtain four real roots.

In particular, deviation of the predicted curve from the experimental data is reduced as
the virtual mass coe$cient is reduced. In the void fraction range between 0)1 and 0)25,
comparison is quite improved if the virtual mass coe$cient is taken as C)0)1. As the void
fraction is raised, the curves become close and nearly horizontal, showing less dependency
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on the virtual mass coe$cient. Therefore, it can be argued that if the virtual mass terms have
to be included in the governing equations in order to take the relative acceleration into
account, their coe$cient must be controlled appropriately so as to not introduce excessive
dispersion on the wave propagation.

4. CONCLUDING REMARKS

The new interfacial pressure jump terms based on the surface tension model have
contributed to the hyperbolic type of governing equation system for the spherical-bubbly
#ow. The speed of sound in the mixture evaluated by the real system eigenvalues has shown
excellent agreement with the existing experimental data. Although it is true that the virtual
mass itself can improve numerical e$ciency and has a considerable justi"cation for the
unsteady bubbly #ow, it can guarantee neither the real eigenvalues of the system nor the
correct speed of sound in the two-phase mixture. By adding the interfacial pressure jump
terms simultaneously in the momentum equations, numerical computation becomes
unconditionally stable regardless of the magnitude of the virtual mass terms: however, the
wave su!ers from the non-physical wave dispersion. For the particular case of the relatively
accelerating #ow such as the critical #ow, the interfacial pressure jump and the virtual mass
terms should be used with appropriate amount of virtual mass coe$cient in order not to
have a non-physical e!ect on the propagation of sound waves.

REFERENCES

1. R. W. LYCZKOWSKI, D. GIDASPOW, C. W. SOLBRIG and E. D. HOGHES 1978 Nuclear Science and
Engineering 66, 378}396. Characteristics and stability analyses of transient one-dimensional
two-phase #ow equations and their "nite di!erence approximations.

2. J. D. RAMSHAW and J. A. TRAPP 1978 Nuclear Science and Engineering 66, 93}102.
Characteristics, stability, and short-wave length phenomena in two-phase #ow equation systems.

3. H. B. STEWART 1979 Journal of Computational Physics 33, 259}270. Stability of two-phase #ow
calculation using two-#uid models.

4. R. T. LAHEY JR, L. Y. CHENG, D. A. DREW and J. E. FLAHERTY 1980 International Journal of
Multiphase Flow 6, 281}294. The e!ect of virtual mass on the numerical stability of accelerating
two-phase #ows.

5. L. Y. CHENG, D. A. DREW and R. T. LAHEY JR 1985 American Society of Mechanical Engineers,
Journal of Heat ¹ransfer 107, 402}408. An analysis of wave propagation in bubbly
two-component, two-phase #ow.

6. H. C. NO and M. S. KAZIMI 1985 Nuclear Science and Engineering 89, 197}206. E!ects of virtual
mass on the mathematical characteristics and numerical stability of the two-#uid model.

7. D. A. DREW and R. T. LAHEY JR 1987 International Journal of Multiphase Flow 13, 113}121. The
virtual mass and lift force on a sphere in rotating and straining inviscid #ow.

8. A. R. D. THORLEY and D. C. WIGGERT 1985 International Journal of Multiphase Flow 2, 149}160.
The e!ect of virtual mass on the basic equations for unsteady one-dimensional heterogeneous
#ows.

9. S. J. LEE, K. S. CHANG and K. KIM 1998 International Journal of Multiphase Flow 24, 855}866.
Pressure wave speeds from the characteristics of two #uid two-phase hyperbolic equation system.

10. S. J. LEE, K. S. CHANG and S. J. KIM 1998 International Journal of Heat and Mass ¹ransfer 41,
2821}2826. Surface tension e!ect in the two-#uid equation system.

11. M. S. CHUNG, K. S. CHANG and S. J. LEE 2000 Numerical Heat ¹ransfer 38, 169}191. Wave
propagation in two-phase #ow based on a new hyperbolic two-#uid model.

12. C. A. CROXTON 1980 Statistical Mechanics of the ¸iquid Surface. New York: Wiley.
13. R. D. J. PRESENT 1974 Journal of Chemical Physics 61, 4267}4269. On the product of surface

tension and compressibility of the liquids.



728 M.-S. CHUNG E¹ A¸.
14. P. A. EGELSTAFF and B. WIDOM 1970 Journal of Chemical Physics 53, 2667}2669. Liquid surface
tension near the triple point.

15. J. U. BRACKBILL, D. B. KOTHE and C. ZEMACH 1992 Journal of Computational Physics 100,
335}354. A continuum method for modeling surface tension.

16. J. P. AUBIN and I. EKELAND 1984 Applied Nonlinear Analysis. New York: Wiley.
17. Y. P. PAPALAMBROS and W. J. DOUGLASS 1980 Principles of Optimal Design. Cambridge:

Cambridge University Press.
18. S. J. D. VAN STRALEN 1996 International Journal of Heat and Mass ¹ransfer 9, 995}1020. The

mechanism of nucleate boiling in pure liquids and in binary mixtures*Part I.
19. M. ISHII and K. MISHIMA 1980. Study of two-#uid model and interfacial area. N;REG/CR-1873.
20. G. B. WHITHAM 1974. Linear and Nonlinear Waves. New York: Wiley.
21. R. E. HENRY, M. A. GROLMES and K. H. FAUSKE 1971. Pressure pulse propagation in the

two-phase one- and two-component mixture. AN¸-7792.

APPENDIX A: NOMENCLATURE

a interfacial area density
A coe$cient matrix
B coe$cient matrix
c speed of sound
C coe$cient
D bubble diameter
¸ #uid bulk modulus
p pressure
R radius of curvature
t time
; state vector
v #ow velocity
x space co-ordinate

Greek symbols
a volumetric phase concentration
j system eigenvalue
o #uid density
p surface tension

Subscripts and Superscripts
g gas phase
i index for interface
k index for each #uid
l liquid phase
s isentropic process
m index for two-phase mixture
v index for virtual mass
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